

The Cray Programming

Environment

An Introduction

Vision

● Cray systems are designed to be High Productivity as well
as High Performance Computers

● The Cray Programming Environment (PE) provides a
simple consistent interface to users and developers.
● Focus on improving scalability and reducing complexity

● The default Programming Environment provides:
● the highest levels of application performance

● a rich variety of commonly used tools and libraries

● a consistent interface to multiple compilers and libraries

● an increased automation of routine tasks

● Cray continues to develop and refine the PE
● Frequent communication and feedback to/from users

● Strong collaborations with third-party developers

2

Scalable Software Architecture

Microkernel on Compute nodes, full

featured Linux on Service nodes.

Service PEs specialize by function

Software Architecture eliminates OS

“Jitter”

Software Architecture enables

reproducible run times

 Service Partition

Compute

Partition

Specialized

Linux

nodes

Scalable Software Architecture: CLE

4

Trimming OS – Standard Linux Server

5

Linux Kernel

Portmap

sshd

slpd

nscd

resmgrd

powersaved

cupsd

kdm

cron mingetty(s)

qmgr master

pickup

ndbd

…

init

klogd

Linux on a Diet – CLE

6

Linux Kernel

ALPS

client
syslogd

Lustre

Client init

klogd

FTQ Plot of Stock SuSE (most daemons
removed)

27550

27750

27950

28150

28350

0 1 2 3

Time - Seconds

C
o

u
n

t

7

FTQ plot of CNL

27550

27750

27950

28150

28350

0 1 2 3

Time - Seconds

C
o

u
n

t

8

Cray Software

Cray’s Supported Programming Environment

Programming
Languages

Fortran

C

C++

I/O Libraries

NetCDF

HDF5

Optimized Scientific

Libraries

LAPACK

ScaLAPACK

BLAS (libgoto)

Iterative
Refinement

Toolkit

FFTW

Cray PETSc
 (with CASK)

Cray Trilinos
 (with CASK)

Cray developed

Licensed ISV SW

3rd party packaging

Cray added value to 3rd party

3rd Party
Compilers

• Intel
Composer

• PGI

GNU

Compilers

Cray Compiling
Environment

(CCE)

Programming

models

Distributed
Memory
(Cray MPT)

• MPI

• SHMEM

PGAS & Global
View

• UPC (CCE)

• CAF (CCE)

• Chapel

Shared Memory

• OpenMP 3.0

• OpenACC

Python

•CrayPat

• Cray
Apprentice2

Tools

Environment setup

Debuggers

Modules

Allinea (DDT)

lgdb

•Abnormal
Termination
Processing

STAT

Debugging Support

Tools

Performance Analysis

Scoping Analysis

Reveal

10

The Cray Compilation Environment (CCE)

● The default compiler on XE and XC systems
● Specifically designed for HPC applications
● Takes advantage of Cray’s experience with automatic vectorization and

shared memory parallelization

● Excellent standards support for multiple languages and programming
models
● Fortran 2008 standards compliant
● C++98/2003 compliant, working on C++11
● OpenMP 3.1 compliant, working on OpenMP 4.0
● OpenACC 2.0 compliant

● Full integrated and optimised support for PGAS languages

● UPC 1.2 and Fortran 2008 coarray support
● No preprocessor involved
● Full debugger support (With Allinea DDT)

● OpenMP and automatic multithreading fully integrated

● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the presence of

OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

11

Cray MPI & SHMEM

12

● Cray MPI
● Implementation based on MPICH3 source from ANL

● Includes many improved algorithms and tweaks for Cray hardware
● Improved algorithms for many collectives

● Asynchronous progress engine allows overlap of computation and comms

● Customizable collective buffering when using MPI-IO

● Optimized Remote Memory Access (one-sided) fully supported including
passive RMA

● Full MPI-3 support with the exception of
● Dynamic process management (eg. MPI_Comm_spawn)

● MPI_LONG_DOUBLE and MPI_C_LONG_DOUBLE_COMPLEX for CCE

● Includes support for Fortran 2008 bindings (from CCE 8.3.3)

● Cray SHMEM
● Fully optimized Cray SHMEM library supported

● Fully compliant with OpenSHMEM v1.0

● Cray XC implementation close to the T3E model

Cray Scientific Libraries

FFT

FFTW

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CASE – Cray Adaptive Simplified Eigensolver

13

Cray Performance Analysis Tools (PAT)

● From performance measurement to performance analysis

● Assist the user with application performance analysis and
optimization
● Help user identify important and meaningful information from

potentially massive data sets

● Help user identify problem areas instead of just reporting data

● Bring optimization knowledge to a wider set of users

● Focus on ease of use and intuitive user interfaces
● Automatic program instrumentation

● Automatic analysis

● Target scalability issues in all areas of tool development

14

Debuggers on Cray Systems

● Systems with hundreds of thousands of threads of
execution need a new debugging paradigm
● Innovative techniques for productivity and scalability

● Scalable Solutions based on MRNet from University of Wisconsin
● STAT - Stack Trace Analysis Tool

● Scalable generation of a single, merged, stack backtrace tree

● running at 216K back-end processes

● ATP - Abnormal Termination Processing

● Scalable analysis of a sick application, delivering a STAT tree and a minimal,
comprehensive, core file set.

● Fast Track Debugging
● Debugging optimized applications

● Added to Allinea's DDT 2.6 (June 2010)

● Comparative debugging
● A data-centric paradigm instead of the traditional control-centric paradigm

● Collaboration with Monash University and University of Wisconsin for scalability

● Support for traditional debugging mechanism
● DDT, gdb, and TotalView

15

An introduction to modules

What are Environment Modules?

17

● The Environment Modules package provides for the dynamic
modification of a user's environment via modulefiles.

● Each modulefile contains the information needed to configure the
shell for an application.
Typically modulefiles instruct the module command to alter or set
shell environment variables such as PATH, MANPATH, etc.

● Modules can be loaded and unloaded dynamically and atomically,
in an clean fashion. All popular shells are supported,
including bash,ksh, zsh, sh, csh, tcsh, as well as some scripting
languages such as perl and python.

● Modules are useful in managing different versions of applications.
Modules can also be bundled into metamodules that will load an
entire suite of different applications

● Check http://modules.sourceforge.net/

http://modules.sourceforge.net/

Environment Setup

● The Cray XC system uses modules in the user
environment to support multiple software versions and to
create integrated software packages

● As new versions of the supported software and associated man pages
become available, they are added automatically to the Programming
Environment as a new version, while earlier versions are retained to
support legacy applications

● You can use the default version of an application, or you can choose
another version by using Modules system commands

18

The module tool on the Cray XC

● How can we get appropriate Compiler, Tools, and
Libraries?
● The modules tool is used to handle different versions of packages

● e.g.: module load compiler_v1
● e.g.: module swap compiler_v1 compiler_v2
● e.g.: module load perftools

● Taking care of changing of PATH, MANPATH,

LM_LICENSE_FILE,.... environment
● Modules also provide a simple mechanism for updating certain

environment variables, such as PATH, MANPATH, and
LD_LIBRARY_PATH

● In general, you should make use of the modules system rather than
embedding specific directory paths into your startup files, makefiles,
and scripts.

● It is also easy to setup your own modules for your own

software

19

Useful module commands

● Which modules are available?
● module avail, module avail cce

● Which modules are loaded?
● module list

● Load software
● module load perftools

● Change programming environment
● module swap PrgEnv-cray PrgEnv-gnu

● Change software version
● module swap cce/8.0.2 cce/7.4.4

20

Which SW Products and Versions Are Available

● avail [avail-options] [path...]
● List all available modulefiles in the current MODULEPATH

● Useful options for filtering

● -U, --usermodules
● List all modulefiles of interest to a typical user

● -D, --defaultversions

● List only default versions of modulefiles with multiple available versions

● -P, --prgenvmodules
● List all PrgEnv modulefiles

● -L, --librarymodules

● List all library modulefiles

● % module avail <product>
● List all <product> versions available

Note : no real ‘regular expressions possible, but leading characters is possible

> module avail Prg
------------------------------- /opt/cray/modulefiles --------------------------------
PrgEnv-cray/5.2.40(default) PrgEnv-intel/5.2.40(default)
PrgEnv-gnu/5.2.40(default)

21

Default module list at KAUST Shaheen II

22

stefan@cdl3:~> module list

Currently Loaded Modulefiles:

 1) modules/3.2.10.3

 2) eswrap/1.1.0-1.020200.1231.0

 3) switch/1.0-1.0502.54233.2.96.ari

 4) craype-network-aries

 5) craype/2.3.0

 6) cce/8.3.10

 7) cray-libsci/13.0.3

 8) udreg/2.3.2-1.0502.9275.1.12.ari

 9) ugni/5.0-1.0502.9685.4.24.ari

 10) pmi/5.0.6-1.0000.10439.140.2.ari

 11) dmapp/7.0.1-1.0502.9501.5.219.ari

 12) gni-headers/3.0-1.0502.9684.5.2.ari

 13) xpmem/0.1-2.0502.55507.3.2.ari

 14) job/1.5.5-0.1_2.0502.54585.3.66.ari

 15) dvs/2.5_0.9.0-1.0502.1873.1.145.ari

 16) alps/5.2.1-2.0502.9041.11.6.ari

 17) rca/1.0.0-2.0502.53711.3.127.ari

 18) atp/1.8.1

 19) PrgEnv-cray/5.2.40

 20) craype-haswell

 21) cray-mpich/7.2.0

stefan@cdl3:~>

PrgEnv-cray is the default PrgEnv-cray is the default

“Meta”-Module PrgEnv-X

23

PrgEnv-X is a “meta”-module loading several modules,
including the compiler, the corresponding mathematical libs,
MPI, system setup needed for the compiler wrappers

> module show PrgEnv-cray

/opt/cray/modulefiles/PrgEnv-cray/5.2.40:

conflict PrgEnv

conflict PrgEnv-gnu

conflict PrgEnv-intel

…

setenv PE_ENV CRAY

setenv XTOS_VERSION 5.2.40

setenv CRAYOS_VERSION 5.2.40

setenv CRAY_PE_TARGET x86-64

prepend-path PE_PRODUCT_LIST CRAY

module swap craype/2.2.1

module load cce/8.3.8

module load cray-libsci

module load dmapp/7.0.1-1.0502.9501.5.219.ari

module load gni-headers/3.0-1.0502.9684.5.2.ari

module load alps/5.2.1-2.0502.9041.11.6.ari

module load rca/1.0.0-2.0502.53711.3.127.ari

module load atp

…

setenv CRAY_PRGENVCRAY loaded
