Introduction to ANSYS Electromagnetic Tools
Presentation Overview

- Introduction to ANSYS Electromagnetics
- Low Frequency Electromagnetics - Maxwell
- High Frequency Electromagnetics - HFSS
- Conclusions
Presentation Overview

- Introduction to ANSYS Electromagnetics
- Low Frequency Electromagnetics - Maxwell
- High Frequency Electromagnetics - HFSS
- Conclusions
Electromagnetics simulate electromagnetic fields and compute electrical parameters that govern electronic device behavior — enabling to optimize product’s performance.
Differentiation

$DC \ldots \ldots \ldots \text{to} \ldots \ldots \ldots \text{Antennas}$

Low Frequency

High Frequency
Low Frequency Applications

Pantograph

Traction Supply

Traction Motor

AM

3~
High Frequency Applications

Platform Integration and RCS

Phased Array Antenna and Antenna Design

Integrated Mobile Devices

Biomedical

Commercial Platform Integration
Presentation Overview

1. Introduction to ANSYS Electromagnetics
2. Low Frequency Electromagnetics - Maxwell
3. High Frequency Electromagnetics - HFSS
4. Conclusions
About ANSYS Low Frequency Electromagnetics

- ANSYS Maxwell is a high-performance interactive software package that uses finite element analysis (FEA) to solve electric or magnetic problems.
- Maxwell solves the electromagnetic field problems by solving Maxwell's equations in a finite region of space

\[\nabla \times H = J + \frac{\partial D}{\partial t} \]

\[\nabla \times E = -\frac{\partial B}{\partial t} \]

\[\nabla \cdot D = \rho \]

\[\nabla \cdot B = 0 \]

- Appropriate set of equations and its terms are used based on the solver selected such as Electrostatic, Magnetostatic, Eddy Current and Magnetic Transient.
Sensors
Electrical Machines

\[
P_{\text{mech}} = \text{torque} \times \text{speed}
\]

\[
P_{\text{elect}} = \text{voltage} \times \text{current}
\]

Mechanical Power

- **Generator**

- **Motor**
Objective: Electrical Machine Cosimulation Design with Power Electronics and Control

- To validate the designed electric machine works with the electric drive and digital control system.

ANSYS Solution

- ANSYS Maxwell can be directly coupled with ANSYS Simplorer and cosimulate during transient analyses.
Objective: Wireless Power Transfer

- To design electromagnetic power transfer from a coil to another coil based on inductive coupling and/or resonant (wireless) coupling

ANSYS Solution

- Using ANSYS Maxwell to calculate the inductive coupling to design the coil topologies
Objective: Fault-Tolerant Electrical Machine Design

- To design the electrical machine to sustain normal load operation after occurrence of a particular fault condition

ANSYS Solution

- ANSYS Maxwell to compute motor performance when a fault condition occurs:
 - Stator to rotor eccentricity
 - Magnet damage and demagnetization
 - Winding abnormalities and faults
 - Unbalanced magnetic pull
Objective: Noise-Vibration Analysis

- To eliminate vibration problem early in the design process and optimize the electrical machine design for low acoustic noise

ANSYS Solution

- ANSYS Maxwell to compute the transient electromagnetic forces and transfer DFT on spatial force distribution to ANSYS Mechanical to perform harmonic and acoustic analysis
Maxwell ANSYS CFD

\[F = f(P(\vec{x}, t), S) \]

\[B = \mu H \]

\[F = kx \]

\[F = ma \]

Solenoid Valve: Fuel Injector

Spray Tip

Plunger

Fuel Filter

Injector Casing

Pressurised Fuel

Electrical Attachment

Solenoid Off

Battery

ANSYS Mechanical
Objective: Motor Design and Thermal Management

• To predict electrical machine design performance based on thermal feedback. For large machines, the cooling system plays a significant role in the overall performance of the entire drive.

ANSYS Solution

• ANSYS Maxwell for electromagnetic analysis, ANSYS Mechanical for thermal analysis and ANSYS Fluent for heat transfer coefficients
Presentation Overview

- Introduction to ANSYS Electromagnetics
- Low Frequency Electromagnetics - Maxwell
- High Frequency Electromagnetics - HFSS
- Conclusions
ANSYS HFSS: Finite Element Method

- High Frequency Structure Simulator
- Full-wave 3D electromagnetic field solver
- Industry leading EM simulation tool
 - Simulation driven product development
 - Shorten design cycle
 - First-pass design success
- Finite element method with adaptive mesh refinement
 - Provides an Automatic, Accurate and Efficient solution
 - Removes requirement for manual meshing expertise
• Use ANSYS HFSS to design antenna element and integrate into phone platform
• Analyze impact of user interaction with phone on antenna’s performance
• Systematically study impact of component manufacturing tolerances on device yield
Integrated Antenna Design Tool and Library with Electromagnetics Field Solver

50+ Topologies

Design Synthesis

Ready to Solve
The real situation: Installed Antenna Performance

- Antennas often designed in isolation or under ideal conditions
- Mounting the antenna on a realistic platform changes its performance
- Can impact overall RF system performance
- Customers want to know installed performance early in the design cycle
Effect of Different Antenna Positions

Position #1

Position #2

Position #3
Reliable Antenna Performance

- Proliferation of antennas in complex industrial environment create reliability issues.
- Shooting and Bouncing Ray simulation techniques can identify and help prevent these antenna ‘co-site’ issues.
Reliable Antenna Performance

- Proliferation of antennas in complex industrial environment create reliability issues.
- Shooting and Bouncing Ray simulation techniques can identify and help prevent these antenna ‘co-site’ issues.
Electromagnetic fields are frequently employed in advanced medical applications like **MRI**. As these devices become more complex, design simulation can maintain advanced functionality while addressing safety concerns.

Applications:

- Magnetic Resonance Imaging (MRI)
- RF ablation
- Specific Absorption Rate (SAR)
Presentation Overview

- Introduction to ANSYS Electromagnetics
- Low Frequency Electromagnetics - Maxwell
- High Frequency Electromagnetics - HFSS
- Conclusions
A summary of ANSYS EM Strengths

• Ease of Use

• Multiphysics advantages
 – Deep electromagnetics, fluid, and structural solver technology and capabilities
 – Drag-n-drop multiphysics couplings
 – Flexible coupling methods
 – Fast, accurate data mapping
 – Automated solver coordination

• Speed
 – Electronics HPC
 – Advanced meshing and solver technologies

• A world-class team of technical support experts