Parallel I/0O

KSL HPC seminar

Bilel Hadri
Computational Scientist
KAUST Supercomputing Lab
bilel.hadri@kaust.edu.sa

alllasc &llall aealna

King Abdullah University of
Science and Technology

-

D

s D Hardware

-

® Shaheen Cray XC40

® 6174 nodes of 32 cores Haswell with a total of 792 TB of memory

® Cray Sonexion® 2000 Storage System with 17.2 PB of usable capacity with
performance exceeding 500 GB/sec.

® Cray DataWarp with a capacity of 1.5 PB and a performance exceeding 1.5 TB/
sec (Will be presented in April Seminar)

® Cray Tiered Adaptive Storage (TAS)r with 20 PB of capacity (up to 100 PB)

G

Data Storage

e el o

User home /home/username 200 G

User project /project/kxxx Lustre 20T No No

User scratch /scratch/username Lustre - No Yes 60 days
Scratch project [scratch/kxxx Lustre - No Yes 60 days
Scratch tmp [scratch/tmp Lustre - No Yes 3 days

* Home directory, designed for development. Previous versions of files can be
recovered from /home/<username>/.snapshot directory.

» [scratch/<username>: Temporary individual storage for data needed for
execution. Files not accessed in the last 60 days will be deleted.

» /[project/kit#: 20 TB per project. All files are copied to tape. Once a project has
used 20 TB of disk storage, files will be automatically deleted from disk with a
weighting based on date of last access. Stub files will remain on disk that link to
the tape copy.

=
7

2

\

it GO HPC systems and 1/0

e "Asupercomputer is a device for converting a CPU-bound problem into an 1/0 bound
problem.” [Ken Batcher]

® Machines consist of three main components:
® Compute nodes
® High-speed interconnect
® |/O infrastructure

® Most optimization work on HPC applications is carried out on
¢ Single node performance

¢ Network performance (communication)

en it becomes a real problem
—— :

s

it GO Why do we need parallel 1/0?

® /O subsystems are typically very slow compared to other parts of a
supercomputer

® You can easily saturate the bandwidth

® Once the bandwidth is saturated scaling in I/O stops

® Adding more compute nodes increases aggregate memory bandwidth and flops/s,
but not I/0

® Imagine a 24 hour simulation on 16 cores.
® 1% of run time is serial I/0.

® You get the compute part of your code to scale to 1024 cores.
® 64x speedup in compute: I/O is 39% of run time (2216” in computation and 14'24” in 1/0)

® Parallel /0O is needed to
® Spend more time doing science
® Not waste resources
vent affecting other users

A\

(f(.))),

alllusc Ellall dealy \
ausll F9mu ~
King Al
Scil‘ncc and chhnol()gy

I/O Performance

® There is no “One Size Fits All” solution to the I/O problem. E——
® Many /O patterns work well for some range of parameters. .:_* —

® Bottlenecks in performance can occur in many locations. -
(Application and/or File system)

® Going to extremes with an I/O pattern will typically lead to
problems.

Increase performance by decreasing number of /10 =
erations (latency) and increasing size (bandwidth).

(b "
s G Serial I/0: Spokesperson

® One process performs 1/0.
® Data Aggregation or Duplication
® Limited by single I/0 process.

® Simple solution, easy to manage, but

® Pattern does not scale. -
® Time increases linearly with amount of data.

® Time increases with number of processes.

> Parallel I/O: File- -per-Process

® All processes perform I/O to
individual files.
® Limited by file system.

® Pattern does not scale at large
process counts.

® Number of files creates
bottleneck with metadata
operations.

® Number of simultaneous disk
accesses creates contention
for file system resources.

0= .
el Parallel 1/0: Shared File

® Shared File

® Each process performs I/O to
a single file which is shared.

® Performance

¢ Data layout within the
shared file is very
important.

® At large process counts
contention can build for
file system resources.

===

s G Pattern Combinations

® Subset of processes which perform |/O.
® Aggregation of a group of processes data.
® Serializes I/0 in group.
® |/O process may access independent files.
® Limits the number of files accessed.

® Group of processes perform parallel /O to a shared file.
® Increases the number of shared files

- increase file system usage.
® Decreases number of processes which access a shared file
- decrease file system contention.

G2 |
King Abdullah University of ~
Science and Technology

® Lustre file system is made up of an underlying:
® set of I/O servers called Object Storage Servers (0OSSs)

® disks called Object Storage Targets (OSTs).

® The file metadata is controlled by a Metadata Server (MDS) and
stored on a Metadata Target (MDT).

Application
High-Level I/O Library

Parallel File System
Storage Hardware

G

Shaheen Il Sonexion

Cray Sonexion 2000 Storage System
consisting of 12 cabinets containing
a total of 5988 4TB SAS disk drives.

The cabinets are interconnected by
FDR Infiniband Fabric .

Each cabinet can contain up to 6
Scalable Storage Units (SSU); Shaheen
Il has a total of 72 SSUs.

8
~
\ =
[=\
I

|

As there are 2 OSS/OSTs for each SSU,
this means that there are 144 OSTs in
total

[

D0

. File I/O: Lustre File System

=S

alllase Ellall daaly %'»))),

|9 A
King Abdullah University of

2\

and Technology

® Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target)
available to Lustre clients.

® The MDS opens and closes files and stores directory and file Metadata such as file ownership,
timestamps, and access permissions on the MDT.

® Each MDS manages the names and directories in the Lustre file system and provides network
request handling for the MDT.

® Object Storage Server(OSS) provides file service, and network request handling
for one or more local OSTs.

® Object Storage Target (OST) stores file Q

ata (chunks of files).

allluse Ellall aeals o\
King Abdullah University of
Science and Technology

® Once a file is created, write operations
take place directly between compute
node processes (PO, P1, ...) and Lustre
object storage targets (OSTs) going
m[r)osugh the OSSs and bypassing the

® For read operations, file data flows
from the OSTs to memory. Each OST
and MDT maps to a distinct subset of
the RAID devices.

Application
processes
running on
compute
nodes

High speed
network

10
Processes
running on

service
nodes

110 channels

RAID
Devices

Memory Memory Memory Memory

IR '

$
MDS [osso | - [ossm |

Y Y Y Y Y
D oS C O >

it GO Lustre filestripping

(

® Files on the Lustre filesystems can be striped

® transparently divided into chunks that are written or read
simultaneously across a set of OSTs within the filesystem.

® The chunks are distributed among the OSTs using a method that
ensures load balancing.

® Benefits include:

® Striping allows one or more clients to read/write different parts of the
same file at the same time, providing higher I/O bandwidth to the file
because the bandwidth is aggregated over the multiple OSTs.

® Striping allows file sizes larger than the size of a single OST. In fact, files
larger than 100 GB must be striped in order to avoid taking up too much
space on any single OST, which might adversely affect the filesystem.

File Striping: Physical and Logical
Views

PO P1 P2 P3 Four application processes write a variable

amount of data sequentially within a shared
H: :H H file. This shared file is striped over 4 OSTs with

| | 1 MB stripe sizes.
/ / / / PO P1 P2 P3
B SN S B - H: :H H

Offset OMB 1MB 2MiB 3MB 4MiB 5MiB

G

This write operation is not stripe aligned therefore
some processes write their data to stripes used by | =14

other processes. Some stripes are accessed by —

more than one process
OSTO OST1 OST2 OST3

B OSTs are accessed by variable numbers of processes (3 OSTO, 1 OST1, 2 OST2 and 2
- May cause contention ! 0ST3).

Parallel I/O tools for Computational
Science

i)

\

alllasc Ellall doaly @
zaziallg o
ing Abdullah University of

&

Application
High-Level /O Library

Parallel File System
Storage Hardware

® High level 1/0 library maps app. abstractions to a structured, portable file format
(e.g. HDF5, Parallel netCDF)

® Middleware layer deals with organizing access by many processes (e.g. MPI-10)

® Parallel file system maintains logical space, provides efficient access to data (e.g.
Lustre)

 code 1/0 bound ?

GS

st WD Allinea DDT

® Compile the code
® username@cdl4:~> module load allinea-report/5.1-43967

® username@cdl4:~> make-profiler-libraries

® username@cdl4:~> cc -O3 myapp.c -0 myapp.exe -dynamic —LSPWD -Imap-sampler-pmpi -Imap-sampler -
WI,--eh-frame-hdr

® Edit the submission script to add:
® export LD_LIBRARY_PATH=/path/to/map-sampler-libs:SLD_LIBRARY_PATH
® export ALLINEA_MPI_WRAPPER=/path/to/map-sampler-libs/libmap-sampler-pmpi.so

® perf-report srun ./myapp.exe myargs

® When the job is submitted and executed, it will produce a .html and .txt file that can be open on
the login node afterwards:

® username@cdl4:~> firefox myapp.exe_Xp_DD-MM-YYYY-HH-MM.html or check the txt file

® Note for python code:

perf-report srun /sw/xc40/python/3.4.2/cnl5.2_gnu4.9.2/bin/python3 test.py

srun -n 16 fhenchio_allinea empLte

1 node (22 physical, 64 logical cores per node)
125 GE per node

aull'lEa 1€ processes
AR PERFORMANCE Machine: nid00797 /
= REPORTS Starttime: Mon Feb 1 18:48:06 2016 L y
(//((/;\ Total time: B seconds (0 minutes) MFI o
‘))), Full path: Jlustreiscratch/hadrib/io-ex ercices/benchio
allasc Ellall daals A S ull path:
ayisillg pglell ‘& II:"+:+I|_
King Abdullah University of otes:

Science and Technology

Summary: benchio_allinea is |/0-bound in this configuration
Allinea(2) .,

MP| e [

o s [

This application run was /0-bound. A breakdown of this time and advice for inv estigating further is in the /0 section

Thmae spent running appicaton code. High vabues are usually good.
This s very low; foous on improwing MR or B0 periormance frst.

Thme spent in M calls. High values ane usually bad.

This is average: check the MPI breacdown for advics an reducing it

Time spent in flesystem V0. High values ane usually bad.

This is wery high: check the 10 breskdown section for optimization adece.

bl

CPLU MPI

A breakdown of the 2.0% CPU time: A breakdown of the 22.2% MPI time:

Scalar numenic o 141%] Time in collective calls EEE N
Viector numenc o 00% Thma in paint-to- point cails 17%

Memory accesses 255% [Effoctive process callective rate 219mresss [

The per-care perfonmance is memary- bound. Use a profler to Efiective process paint-to-point rate 0,00 ytes/s

identidy time:consuming loops and chack ther cache performance.

Mo time IS spent in vectonzed mstructons. Check the compiler's
WRCTonzation acthvicn to s wiy ey hoops could not e wectonzed.

Miost of the time ks spent in collective calls with a very kow transfer
rate. This suggests load ImBbalancs IS Causing synchronzaton
oreernead; use an MR profiler to vestigate.

I/ Threads

A breakdown of the 52.1% VO time: A breakdown of how mubtiple threads wers used:
Thmae in resds 01% Computation 1%

Time mwntes 299% [Synchronzatian 0%

Transdor rate unavalkable {no jprocts= peds S| Priysical core wtilization 295% [l

Most of the time is spent In write aperations with a wery kow System koad 2% A

efipctive transder rate. This may be caused by contention for the
flesystem or ineficient access pattenns. Use an B0 profiler to
rees tigate winich winte calls ane aflected.

Memory

Perprocess memory usage may also affect scaling:
Meoan process memory usage 150 M8 [

Poak process memory usage 17088 [

Paak node Memory usage G |

Th peakc Node MaEmary Usage IS wery' kv, Running with fowor kR
processes and mare data on each process may be mone effcient.

Mo mexsurable Bime s spent i mulithreaded code.

Prysical cone utilzation i low. Try increasing the number of
processes to improve perionmance.

GS

)

et G Craypat

ience and Technology

® Load Craypat performance tools
® module unload darshan
® module load perftools

® Build application keeping .o files
® make clean ; make

® Instrument application for automatic profiling analysis
You should get an instrumented program a.out+pat
® pat_build -u -g hdf5,mpi,io,sysio a.out+pat

® Run application to get top time consuming routine
L srun... a.out+pat

You should get a performance file (“<sdatafile>.xf”) or multiple files in a
ry <sdatadir>.

i &%’”" Craypat (2)

dTh Igy

Table 1
Time$% | Time | Imb. | Imb. | Calls |Functionnction
| | Time | Time$%$ | | Sourceurce
| | | | | Linene
100.0% | 13,461.594081 | —= | -- | 666,344.0 |Total

| 32.1% | 4,326.121649 | | | .0 |mpi barrier (sync)

| 24.4% | 3,284.591116 | -— | -- | 48,630.0 |MPI FILE WRITE ALL

| 14.0% | 1,884.152065 | | | 0 |h5dwrite c

| | | | | | cray-hdf5-1.8.14-ccel-
parallel/fortran/src/H5Df.c
3

I

| | | | line.334

12.7% | 1,704.005636 | -= | -- | 88,516.0 |nc4_put vara tc
| | | | | cray-netcdf-4.3.3.1-ccel/
netcdf-4.3.3.1/1libsrc4/nc4dvar.c
3 | | | | | line.1431
| 9.9% | 1,338.717666 | - | -- | 49,539.0 |write_var
| | | | | cray-netcdf-4.3.3.1-ccel/
netcdf-4.3.3.1/1libsrc4/nc4hdf.c
3 | | | | | line.2262
| 3.0% | 397.666538 | == | -= | 128.0 |mpi_init (sync)

A
S

A

=
el |/O Utility: Darshan

)

(

® Darshan is “a scalable HPC 1/0O characterization tool... designed to capture
an accurate picture of application 1/0 behavior... with minimum overhead”

¢ |/O Characterization
® Sheds light on the intricacies of an application’s I/O
® Useful for application I/0 debugging
® Pinpointing causes of extremes
® Analyzing/tuning hardware for optimizations

® |Installed by default on Shaheen
® Requires no code modification (only re-linking)
® Small memory footprint, no-verhead

® Includes a job summary tool

® Location of the gz:$DARSHAN_LOGPATH/YYYY/MM/DD/
username_exe_jobid_xxx.gz

-

—

it GO Darshan Specifics

® Darshan collects per-process statistics (organized by file)

® Counts I/O operations, e.g. unaligned and sequential accesses
® Times for file operations, e.g. opens and writes
® Accumulates read/write bandwidth info
® (Creates data for simple visual representation

® Get your report :

® |n pdf : darshan-job-summary.pl $DARSHAN_LOGPATH/YYYY/MM/DD/
username_exe_name_idjobid.xxxxx_darshan.gz

e Summary of performance : darshan-parser —perf
$DARSHAN_LOGPATH/YYYY/MM/DD/
username_exe_name_idjobid.xxxxx_darshan.gz

o —

wrf.exe (11/26/2015) lof3

AR
/,—\
((@:,,)), [jobid: 667358 [wid: | nprocs: 1216 runtime: 2884 seconds
Jac asa \,
King Abdullah University of

Science and Technology

Averaga LD cost per procoss U Opasation Counts

g

B8

Pemantags of nn ima
B &

=

Foad Write Op-'I Shl Soak Mmap Fsyrc
POSD - MPEO Coll. m—
==

MPI-O Indep.
1K) Sizns 10 Paltern
1. 2008 - 120406
_ Taei - Ta+06
g BO0000 |- ? 800000 |
2 -
3 00000 [=
g 0000 | =
& 400000 |
200000 |-
200000 -
}‘) %
o LA “'4 ° o Wie
Foad s Wil == Total e Socuantial === Consecutive s
File Count Summary
Most Common Access Sizes (estimated by 1/O access offsets)
access size count type | number of files | ave. size | max size
1048576 1182182 total opened 2446 485M 411G
4 81 read-only files 3 27G 77G
108 &0 write-only files 6 180G 411G
16 18 read write files li] 0 0
created files [180G 411G

wrf.exe (11/26/2015) 2of3

i)

-

|~

alllasc Ellall dealy g Tiersasgann frorm Brel i bl e dctas of Independent T

0

asisilly pglall
K ence and Teehnology il |
oz F
=0 L
s |
a 3
aca |
g 3
a¥neso docam ponm oD oomme om0 0300 oxw T Py
[e S
Tirrssitan Bors Sewl 1o il wil oo on Sceteren B
31
e |
oz b
a0 b
aoe |
a L
m 3
b
whoso oesm oonom cowme comoo mmco | mmom0 comso | oeom oodam
[i e S
Tirrsigan frorn Bl i bl o ol
. . ———
N —
B[—
=
DO0o000 uacn.am mt'l.&m au.um m:;ma mz'sm m-a'am mém mu'nm uau.am
[i e S
Average /0 per process
Cumulative dme spent in Amount of IO (ME)
1/0 functions (seconds)
Independent reads 0.000002 0.000588
Independent writes 0.000000 0.000055
Independent metadata 0.016473 N/A
Shared reads 0.061813 64.928630
Shared writes 0.970258 Q08.205085
Shared metadata 0.038747 N/A
Data Transfer Per Filesystem
Write Read
File System MiB| Rato MiE | Rato

/lustre 110437745073 | 1.00000 | 78953.92893 | 1.00000

AR

A\ [
Variance in Shared Files
File Processes Fastest Slowest T
Suffix Rank Time | Bytes | Rank Time | Bytes Time Bytes
e 12-18_00_30_00 1216 | 993 | 757.912663 1] 0| 758125728 | 411G 13.1 | 1.26e+10
e 12-18_01_00_00 1216 | 466 | 757.339776 L] 0 757.524430 | 411G 129 | 1.268+10
- 12-18_01_00_00 1216 | 1159 | 164.842321 1] 0| 164.939220 Bel 2.8 | 2.64e4+00
e 12-18_00_30_00 1216 | 423 | 156.757853 (1] 0] 156.869305 Bel 275 | 2.64e4+00
oo 12- 18000000 1216 | 1206 | 152.131270 1] 0] 152.283136 Bal 264 | 2642400
59/wrfinput_d01 1216 1 87.747921 0 0| 100346005 TG 2.14 | 2.36e+00
1759 wrfbdy_d01 1216 8 3.000217 1] 0 3.568701 | 280M (0.0117 | 8.3%=+06
..., namelist.input 1216 | 956 0000348 (1]] 0.015663 0| 0.00224 L]

)]

E
3

.
-

Optimizations

® file striping to increase |0 performance

¢ |OBUF
® Serial I/O operations

® MPI-IO hints

® Use /O libraries: HDF5, NetCDF, ADIOS

D

-

alllasc &llall dealy
44isillg aglell
King Abdullah University of

6
Ji

Lustre Utility

® Lustre provides a utility to query and set access to the file
system that are faster and more efficient than GNU command.

They are all sub commands to the program lIfs .

hadrib@cdl4:1fs help quotacheck data version

Available commands are: quotaon hsm;gtate
setstripe quotaoff hsm set
getstripe setquota hsm clear
setdirstripe quota hsm action
getdirstripe flushctx hsm archive
mkdir lsetfacl hsm:restore
rm _entry lgetfacl hsm release
pool list rsetfacl hsm remove
find rgetfacl hsm cancel
check cp swap layouts
join 1s migf;te
osts changelog help

mdts changelog clear exit
df fid2path quit
path2fid

command-name =
e e e i

;
1
()

D Useful Lustre commands

® Listing Striping Information
® [fs getstripe filename
® |fs getstripe -d directory_name

® File stripping:
® |fs setstripe -s stripe_size -c stripe_count dir/filename

® Note: The stripe settings of an existing file cannot be changed. If you
want to change the settings of a file, create a new file with the
desired settings and copy the existing file to the newly created file.

i)

A\
=
-

alllusc Ellal] dealy
4i8illg @
Abdullah University of

(((((A

Combustion code 2x speedup

time 1/O

time code 122 91 83 87 85
%I1/I0 65% 53% 45% 48% 46%
Speedup 10 1.00 1.65 2.14 1.88 2.03

Speedup code 1.00 1.34 1.47 1.40 1.44

(/(«SJ)))),]] " m
g WRF 12 d th file st
s x speedup with file striping
| jobid: 667358 o) | nproes: 1216 runtime: 2884 seconds e
Default striping 1,
| 170 time: 2094 sec
il § ramon Total time: 2884 sec
500 § tewcst
5‘ 40 % 800000 +
g . é 600000 |
& so0000 | File Count Summary
0 200000 | (estimated by 1/0 access offsets)
T type | number of files | avg. size | max size
Other (inzluding application computs) mm NPLIO Ity O Gl m— total opened 2446 485M 411G
‘ read-only files 3 27G 77G
write-only files 6 180G 411G
| jobid: 669210 o | nprocs: 1216 runtime: 959 seconds read,/write files 0 0 0
Average |0 cost per process 'O Operation Counts CreatEd ﬁles 6 180G 411G
100 1.6e+06
14e+06
£ §ram | Stripping over 144 1/0
Ee wo | .
i e time: 174 sec
ol £ o | Total time: 959 sec
& 400000 |
° il I 1/0 speedup: 12x

0 . L L . L
Read o Read Write Open Stat Seek Mmap Fsync

Mst;ggg = POSIX MPI-IO Coll. e—— Tota I ti me S peed

Cther (including application compute) MPI-IQ Indep. o

‘.
A

‘é

mlmﬂﬂml_\ \\‘g—,‘
22" stripe Tuning for Natural Migration Code
Best LFS Stripe Count for Different Node Counts
2000
1800
1600
% 1400
.g 1200 =50 Nodes
% 1000 «{3=100 Nodes
.g 800 “+=250 Nodes
% 600 =500 Nodes
400 «3&=1000 Nodes
200
- i 4 10 100 144
. LFS Stripe Count

A
=

oSy

~= g Stripe Tuning for Natural Migration Code

King Abdullah University of
Science and Technology

‘e

Darshan output before tuning

Average 1/O cost per process 1/0 Operation Counts
100 - 3e+07
80 - 2.5e+07 |
g a
=]
g’ 60 % 2e+07
o =
o o
gl T 15607
: -
o ot £ 1e:07 +
8
0 5e+06
L L | L L L | Most Common Access Sizes File Count Summary - -
Read Write Open Stat Seek Mmap Fsync 2ccess size count type | number of files | avg. size | max size
total opened 5305 17M 86G
Metadata m— POSIX MPI-10 Coll. m—
Other (including application oo?n?)uatle) =] MPI-IO Indep. === © 17312222 zgoggzgg read-only files 6 15G 86G
write-only files 1 108M 108M
21188 26485 s
3268 5297 read/write files 0 0 0
created files 1 108M 108M
Average 1/0 cost per process 1/0 Operation Counts
100 6e+06 -
80 5e+06
g 2
E :
E 60 | g4e+06 F
[s]
[} '8
gl < 3e+06 -
8 1
& 20 | é2e+06 o
&
0 1e+06

Read Write Open Stat Seek Mmap Fsync

POSIX o MPI-1O Coll. m—

Other (including application compute) = MPI-IO Indep. ===

Metadata

-
it GO |OBuf for serial

¢ Advantages
® Aggregates smaller read/write operations into larger operations.
o Examples: OS Kernel Buffer, MPI-IO Collective Buffering

¢ Disadvantages
® Requires additional memory for the buffer.
® Can tend to serialize 1/0.

® Use I/O buffering for all sequential I/O

® |OBUF is a library that intercepts standard I/O (stdio) and enables
asynchronous caching and prefetching of sequential file access

® No need to modify the source code but just
® | oad the module iobuf
ild your application

=
(B

et G Case Study: Buffered I/O

ience and Technology

A
A

® A post processing application writes a 1GB file.

® This occurs from one writer, but occurs in many small write operations.
® Takes 1080 s (~ 18 minutes) to complete.

® |0 buffers were utilized to intercept these writes with 4 64 MB buffers.
® Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef cn_2008052600£000"

Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119°
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864 X
Sys Write 17 3.848807 1081.145508 280.904052 66686072 E
Buffers used 4 (256 MB)
Prefetches 6

Preflushes 15

e Cllall daoly N\
w2 MPI I/O hints
King Abdullah University of

Science and Technology

® The MPICH_MPIIO_HINTS variable specifies hints to the MPI-10 library that can, for
instance, override the built-in heuristic and force collective buffering on:

e setenv MPICH _MPIIO _HINTS="*:romio cb write=enable:romio_ds write=disable"

® Placing this command in your batch file before calling your executable will cause your
program to use these hints.

® The * indicates that the hint applies to any file opened by MPI-IO,

® MPICH_MPIIO_HINTS_DISPLAY=1 will dump a summary of the current MPI-IO hints
to stderr each time a file is opened.

® Useful for debugging and as a sanity check againt spelling errors in your hints.

® Full list and description of MPI-IO hint is available from the intro_mpi man page.

o
(((.)))),

alllasc Ellall dealy
a.u__dlg F9mu \
Kin gAbd || h University of

and Techne ology

I/O Best Practices

® Read small, shared files from a single task

® |Instead of reading a small file from every task, it is advisable to read the entire file from one task and
broadcast the contents to all other tasks.

® Limit the number of files within a single directory
® Incorporate additional directory structure

® Set the Lustre stripe count of such directories which contain many small files to 1. (default
on Shaheen)

® Place small files on single OSTs

® If only one process will read/write the file and the amount of data in the file is small (<1 MB to 1 GB),
performance will be improved by limiting the file to a single OST on creation.

—> This can be done as shown below by: # Ifs setstripe PathName -s 1m -i -1 -¢ 1 (default on Shaheen)

s GO /0 Best Practices (2)

ience and Technology

® Place directories containing many small files on single OSTs

® If you are going to create many small files in a single directory, greater efficiency will be achieved if you
have the directory default to 1 OST on creation

—># Ifs setstripe DirPathName -s 1m -i -1 -c 1 (default on Shaheen)

® Avoid opening and closing files frequently
® Excessive overhead is created.

® Use Is -l only where absolutely necessary

® Consider that “Is -I” must communicate with every OST that is assigned to a file being
listed and this is done for every file listed; and so, is a very expensive operation. It also
causes excessive overhead for other users. "Is" or "Ifs find" are more efficient solutions.

® Consider available I/0 middleware libraries

® For large scale applications that are going to share large amounts of data, one way to
improve performance is to use a middleware library; such as ADIOS, HDF5, or MPI-

—

= :
it GO /0 Best Practices (3)

® Reduce I/O as much as possible:
® only relevant data must be stored on disks
® Save data in binary/unformatted form

® asks for less space comparing with ASCl/formatted ones | It is
faster (less OS interaction)

® Save only what is necessary to save for restart or
checkpointing, everything else, unless for debugging reason or
quality check, should be computed on the fly .

® Think parallel for I/O like for your computations

® A bad behaving application hurts not only itself but ALL
ing applications!

LGy
s G More docs and refs.

e http:/lwww.mcs.anl.gov/research/projects/darshan

® https://lwww.nics.tennessee.edu/computing-resources/file-
systems/io-lustre-tips

® http:/lresearchcomputing.github.io/meetup fall 2014/pdfs/
fall2014 meetup10 lustre.pdf

¢ http://lwww.nas.nasa.qgov/hecc/support/kb/lustre-best-
practices 226.html

® http://docs.cray.com/cgi-bin/craydoc.cqgi?
mode=View;id=S-2490-40;idx=books search:this sort=release

date%20desc;q=getting%20started;type=books;title= Gettmg
tarted%200n%20MP1%201/0

)]

(//‘:\\

D

/

AN
X
=

alllasc &llall dealy
axiaillg o

King Abdullah University of
Science and Technology

s

Thank You !

