
Parallel I/O
KSL HPC seminar

Bilel Hadri
Computational Scientist

KAUST Supercomputing Lab
bilel.hadri@kaust.edu.sa

Hardware

�  Shaheen Cray XC40
�  6174 nodes of 32 cores Haswell with a total of 792 TB of memory
�  Cray Sonexion® 2000 Storage System with 17.2 PB of usable capacity with

performance exceeding 500 GB/sec.

�  Cray DataWarp with a capacity of 1.5 PB and a performance exceeding 1.5 TB/
sec (Will be presented in April Seminar)

�  Cray Tiered Adaptive Storage (TAS)r with 20 PB of capacity (up to 100 PB)

Data Storage
Area

Path Type Quota Backups Purged

User	
 home	
 /home/username	
 NFS	
 200	
 G	
 Yes	
 No	

User	
 project	
 /project/kxxx	
 Lustre	
 20T	
 No	
 No	

User	
 scratch	
 /scratch/username	
 Lustre	
 	
 	
 -­‐	
 No	
 Yes	
 60	
 days	
 	

Scratch	
 project	
 /scratch/kxxx	
 Lustre	
 	
 	
 -­‐	
 	
 No	
 Yes	
 60	
 days	

Scratch	
 tmp	
 	
 /scratch/tmp	
 Lustre	
 	
 	
 -­‐	
 	
 No	
 Yes	
 3	
 days	

	

•  Home	
 directory,	
 designed	
 for	
 development.	
 Previous	
 versions	
 of	
 files	
 can	
 be	

recovered	
 from	
 /home/<username>/.snapshot	
 directory.	

•  /scratch/<username>:	
 Temporary	
 individual	
 storage	
 for	
 data	
 needed	
 for	

execuOon.	
 Files	
 not	
 accessed	
 in	
 the	
 last	
 60	
 days	
 will	
 be	
 deleted.	
 	

•  /project/k##:	
 20	
 TB	
 per	
 project.	
 All	
 files	
 are	
 copied	
 to	
 tape.	
 Once	
 a	
 project	
 has	

used	
 20	
 TB	
 of	
 disk	
 storage,	
 files	
 will	
 be	
 automaOcally	
 deleted	
 from	
 disk	
 with	
 a	

weighOng	
 based	
 on	
 date	
 of	
 last	
 access.	
 Stub	
 files	
 will	
 remain	
 on	
 disk	
 that	
 link	
 to	

the	
 tape	
 copy.	

HPC systems and I/O

�  "A supercomputer is a device for converting a CPU-bound problem into an I/O bound
problem." [Ken Batcher]

�  Machines consist of three main components:
�  Compute nodes
�  High-speed interconnect
�  I/O infrastructure

�  Most optimization work on HPC applications is carried out on
�  Single node performance
�  Network performance (communication)
�  I/O only when it becomes a real problem

Why do we need parallel I/O?
�  I/O subsystems are typically very slow compared to other parts of a

supercomputer
�  You can easily saturate the bandwidth

�  Once the bandwidth is saturated scaling in I/O stops
�  Adding more compute nodes increases aggregate memory bandwidth and flops/s,

but not I/O

�  Imagine a 24 hour simulation on 16 cores.
�  1% of run time is serial I/O.
�  You get the compute part of your code to scale to 1024 cores.
�  64x speedup in compute: I/O is 39% of run time (22’16” in computation and 14’24’’ in I/O).

�  Parallel I/O is needed to
�  Spend more time doing science
�  Not waste resources
�  Prevent affecting other users

I/O Performance
�  There is no “One Size Fits All” solution to the I/O problem.

�  Many I/O patterns work well for some range of parameters.

�  Bottlenecks in performance can occur in many locations.
(Application and/or File system)

�  Going to extremes with an I/O pattern will typically lead to
problems.

�  Increase performance by decreasing number of I/O
operations (latency) and increasing size (bandwidth).

Serial I/O: Spokesperson

�  One process performs I/O.
� Data Aggregation or Duplication
�  Limited by single I/O process.

�  Simple solution, easy to manage, but
�  Pattern does not scale.

�  Time increases linearly with amount of data.
�  Time increases with number of processes.

 Disk

Parallel I/O: File-per-Process

�  All processes perform I/O to
individual files.
�  Limited by file system.

�  Pattern does not scale at large
process counts.
�  Number of files creates

bottleneck with metadata
operations.

�  Number of simultaneous disk
accesses creates contention
for file system resources.

 Disk

Parallel I/O: Shared File
�  Shared File

�  Each process performs I/O to
a single file which is shared.

�  Performance
� Data layout within the

shared file is very
important.

� At large process counts
contention can build for
file system resources.

 Disk

Pattern Combinations
�  Subset of processes which perform I/O.

�  Aggregation of a group of processes data.
�  Serializes I/O in group.

�  I/O process may access independent files.
�  Limits the number of files accessed.

�  Group of processes perform parallel I/O to a shared file.
�  Increases the number of shared files

à increase file system usage.

�  Decreases number of processes which access a shared file
à decrease file system contention.

Lustre

�  Lustre file system is made up of an underlying:
�  set of I/O servers called Object Storage Servers (OSSs)
�  disks called Object Storage Targets (OSTs).

�  The file metadata is controlled by a Metadata Server (MDS) and
stored on a Metadata Target (MDT).

Shaheen II Sonexion
�  Cray	
 Sonexion	
 2000	
 Storage	
 System	

consisOng	
 of	
 12	
 cabinets	
 containing	

a	
 total	
 of	
 5988	
 4TB	
 SAS	
 disk	
 drives.	

�  The	
 cabinets	
 are	
 interconnected	
 by	

FDR	
 Infiniband	
 Fabric	
 .	

�  Each cabinet can contain up to 6
Scalable Storage Units (SSU); Shaheen
II has a total of 72 SSUs.

�  As there are 2 OSS/OSTs for each SSU,
this means that there are 144 OSTs in
total 	

File I/O: Lustre File System

�  Metadata Server (MDS) makes metadata stored in the MDT(Metadata Target)
available to Lustre clients.
�  The MDS opens and closes files and stores directory and file Metadata such as file ownership,

timestamps, and access permissions on the MDT.

�  Each MDS manages the names and directories in the Lustre file system and provides network
request handling for the MDT.

�  Object Storage Server(OSS) provides file service, and network request handling
for one or more local OSTs.

�  Object Storage Target (OST) stores file

 data (chunks of files).

Lustre
�  Once a file is created, write operations

take place directly between compute
node processes (P0, P1, ...) and Lustre
object storage targets (OSTs), going
through the OSSs and bypassing the
MDS.

�  For read operations, file data flows
from the OSTs to memory. Each OST
and MDT maps to a distinct subset of
the RAID devices.

Lustre filestripping
�  Files on the Lustre filesystems can be striped

�  transparently divided into chunks that are written or read
simultaneously across a set of OSTs within the filesystem.

�  The chunks are distributed among the OSTs using a method that
ensures load balancing.

�  Benefits include:
�  Striping allows one or more clients to read/write different parts of the

same file at the same time, providing higher I/O bandwidth to the file
because the bandwidth is aggregated over the multiple OSTs.

�  Striping allows file sizes larger than the size of a single OST. In fact, files
larger than 100 GB must be striped in order to avoid taking up too much
space on any single OST, which might adversely affect the filesystem.

File Striping: Physical and Logical
Views

Four application processes write a variable
amount of data sequentially within a shared
file. This shared file is striped over 4 OSTs with
1 MB stripe sizes.

This write operation is not stripe aligned therefore
some processes write their data to stripes used by
other processes. Some stripes are accessed by
more than one process

à May cause contention !

OSTs are accessed by variable numbers of processes (3 OST0, 1 OST1, 2 OST2 and 2
OST3).

Parallel I/O tools for Computational
Science

�  High	
 level	
 I/O	
 library	
 maps	
 app.	
 abstracOons	
 to	
 a	
 structured,	
 portable	
 file	
 format	

(e.g.	
 HDF5,	
 Parallel	
 netCDF)	

�  Middleware	
 layer	
 deals	
 with	
 organizing	
 access	
 by	
 many	
 processes	
 (e.g.	
 MPI-­‐IO)	

�  Parallel	
 file	
 system	
 maintains	
 logical	
 space,	
 provides	
 efficient	
 access	
 to	
 data	
 (e.g.	

Lustre)	

 è Is my code I/O bound ?	

Allinea DDT
�  Compile	
 the	
 code	

�  username@cdl4:~>	
 module	
 load	
 allinea-­‐report/5.1-­‐43967	

�  username@cdl4:~>	
 make-­‐profiler-­‐libraries	

�  username@cdl4:~>	
 cc	
 -­‐O3	
 myapp.c	
 -­‐o	
 myapp.exe	
 -­‐dynamic	
 –L$PWD	
 -­‐lmap-­‐sampler-­‐pmpi	
 -­‐lmap-­‐sampler	
 -­‐

Wl,-­‐-­‐eh-­‐frame-­‐hdr	

�  Edit	
 the	
 submission	
 script	
 to	
 add:	

�  export	
 LD_LIBRARY_PATH=/path/to/map-­‐sampler-­‐libs:$LD_LIBRARY_PATH	

�  export	
 ALLINEA_MPI_WRAPPER=/path/to/map-­‐sampler-­‐libs/libmap-­‐sampler-­‐pmpi.so	

�  perf-­‐report	
 srun	
 ./myapp.exe	
 myargs	

�  When	
 the	
 job	
 is	
 submiled	
 and	
 executed,	
 it	
 will	
 produce	
 a	
 .html	
 and	
 .txt	
 file	
 that	
 can	
 be	
 open	
 on	

the	
 login	
 node	
 amerwards:	

�  username@cdl4:~>	
 firefox	
 myapp.exe_Xp_DD-­‐MM-­‐YYYY-­‐HH-­‐MM.html	
 	
 or	
 check	
 the	
 txt	
 file	

�  Note	
 for	
 python	
 code:	
 	

�  	
 perf-­‐report	
 srun	
 /sw/xc40/python/3.4.2/cnl5.2_gnu4.9.2/bin/python3	
 test.py	

Allinea (2)

Craypat
�  Load	
 Craypat	
 performance	
 tools	

�  module	
 unload	
 darshan	

�  module	
 load	
 permools	

	

�  Build	
 applicaOon	
 keeping	
 .o	
 files	
 	

�  make	
 clean	
 ;	
 make	

	
 	

�  Instrument	
 applicaOon	
 for	
 automaOc	
 profiling	
 analysis	

�  You	
 should	
 get	
 an	
 instrumented	
 program	
 a.out+pat	

�  pat_build	
 -­‐u	
 -­‐g	
 hdf5,mpi,io,sysio	
 a.out+pat	

�  Run	
 applicaOon	
 to	
 get	
 top	
 Ome	
 consuming	
 rouOne	

�  	
 srun…	
 a.out+pat	

�  You	
 should	
 get	
 a	
 performance	
 file	
 (“<sdatafile>.xf”)	
 	
 or	
 	
 	
 mulOple	
 files	
 in	
 a	

directory	
 <sdatadir>.	
 	

�  To	
 generate	
 report	
 pat_report	
 –o	
 report.txt	
 <sdatafile>.xf	

�  For exact line pat_report -b function,source,line <sdatafile>.xf	

Craypat (2)
Table 1:

 Time% | Time | Imb. | Imb. | Calls |Functionnction
 | | Time | Time% | | Sourceurce
 | | | | | Linene

 100.0% | 13,461.594081 | -- | -- | 666,344.0 |Total
|---
| 32.1% | 4,326.121649 | -- | -- | 3,072.0 |mpi_barrier_(sync)
| 24.4% | 3,284.591116 | -- | -- | 48,630.0 |MPI_FILE_WRITE_ALL
| 14.0% | 1,884.152065 | -- | -- | 71,930.0 |h5dwrite_c_
| | | | | | cray-hdf5-1.8.14-cce1-
parallel/fortran/src/H5Df.c
3 | | | | | line.334
| 12.7% | 1,704.005636 | -- | -- | 88,516.0 |nc4_put_vara_tc
| | | | | | cray-netcdf-4.3.3.1-cce1/
netcdf-4.3.3.1/libsrc4/nc4var.c
3 | | | | | line.1431
| 9.9% | 1,338.717666 | -- | -- | 49,539.0 |write_var
| | | | | | cray-netcdf-4.3.3.1-cce1/
netcdf-4.3.3.1/libsrc4/nc4hdf.c
3 | | | | | line.2262
| 3.0% | 397.666538 | -- | -- | 128.0 |mpi_init_(sync)
|===

======================== Additional details ========================

I/O Utility: Darshan

�  Darshan is “a scalable HPC I/O characterization tool… designed to capture
an accurate picture of application I/O behavior… with minimum overhead”

�  I/O Characterization
�  Sheds light on the intricacies of an application’s I/O
�  Useful for application I/O debugging
�  Pinpointing causes of extremes
�  Analyzing/tuning hardware for optimizations

�  Installed by default on Shaheen
�  Requires no code modification (only re-linking)
�  Small memory footprint, no-verhead
�  Includes a job summary tool

�  Location of the gz:$DARSHAN_LOGPATH/YYYY/MM/DD/
username_exe_jobid_xxx.gz

Darshan Specifics

�  Darshan collects per-process statistics (organized by file)
�  Counts I/O operations, e.g. unaligned and sequential accesses
�  Times for file operations, e.g. opens and writes
�  Accumulates read/write bandwidth info
�  Creates data for simple visual representation

�  Get your report :
�  In pdf : darshan-job-summary.pl $DARSHAN_LOGPATH/YYYY/MM/DD/

username_exe_name_idjobid.xxxxx_darshan.gz
�  Summary of performance : darshan-parser –perf

$DARSHAN_LOGPATH/YYYY/MM/DD/
username_exe_name_idjobid.xxxxx_darshan.gz

Optimizations

�  file striping to increase IO performance

�  IOBUF
�  Serial I/O operations

�  MPI-IO hints

�  Use I/O libraries: HDF5, NetCDF, ADIOS

Lustre Utility

�  Lustre provides a utility to query and set access to the file
system that are faster and more efficient than GNU command.
They are all sub commands to the program lfs .

hadrib@cdl4:lfs help
Available commands are:

 setstripe
 getstripe
 setdirstripe
 getdirstripe
 mkdir
 rm_entry
 pool_list
 find
 check
 join
 osts
 mdts
 df
 getname
 For more help type: help command-name

 data_version
 hsm_state
 hsm_set
 hsm_clear
 hsm_action
 hsm_archive
 hsm_restore
 hsm_release
 hsm_remove
 hsm_cancel
 swap_layouts
 migrate
 help
 exit
 quit

 quotacheck
 quotaon
 quotaoff
 setquota
 quota
 flushctx
 lsetfacl
 lgetfacl
 rsetfacl
 rgetfacl
 cp
 ls
 changelog
 changelog_clear
 fid2path
 path2fid

Useful Lustre commands

�  Listing Striping Information
�  lfs getstripe filename
�  lfs getstripe -d directory_name

�  File stripping:
�  lfs setstripe -s stripe_size -c stripe_count dir/filename

�  Note: The stripe settings of an existing file cannot be changed. If you
want to change the settings of a file, create a new file with the
desired settings and copy the existing file to the newly created file.

Combustion code 2x speedup

 Stripe count 1 2 4 5 10

 time I/O 79 48 37 42 39

 time code 122 91 83 87 85

%I/O 65% 53% 45% 48% 46%

Speedup IO 1.00 1.65 2.14 1.88 2.03

Speedup code 1.00 1.34 1.47 1.40 1.44

WRF 12x speedup with file striping

Default striping 1,
I/O time: 2094 sec
Total time: 2884 sec

Stripping over 144 I/O
time: 174 sec
Total time: 959 sec

I/O speedup: 12x
Total time speedup: 3x

Stripe Tuning for Natural Migration Code

Stripe Tuning for Natural Migration Code
Darshan output before tuning

Darshan output after tuning

IOBuf for serial
�  Advantages

�  Aggregates smaller read/write operations into larger operations.
�  Examples: OS Kernel Buffer, MPI-IO Collective Buffering

�  Disadvantages
�  Requires additional memory for the buffer.
�  Can tend to serialize I/O.

�  Use I/O buffering for all sequential I/O
�  IOBUF is a library that intercepts standard I/O (stdio) and enables

asynchronous caching and prefetching of sequential file access
�  No need to modify the source code but just
�  Load the module iobuf
�  Rebuild your application

Case Study: Buffered I/O
�  A post processing application writes a 1GB file.

�  This occurs from one writer, but occurs in many small write operations.
�  Takes 1080 s (~ 18 minutes) to complete.

�  IO buffers were utilized to intercept these writes with 4 64 MB buffers.
�  Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

 Lustre

MPI I/O hints
�  The MPICH_MPIIO_HINTS variable specifies hints to the MPI-IO library that can, for

instance, override the built-in heuristic and force collective buffering on:

�  setenv MPICH_MPIIO_HINTS="*:romio_cb_write=enable:romio_ds_write=disable"
�  Placing this command in your batch file before calling your executable will cause your

program to use these hints.
�  The * indicates that the hint applies to any file opened by MPI-IO,

�  MPICH_MPIIO_HINTS_DISPLAY=1 will dump a summary of the current MPI-IO hints
to stderr each time a file is opened.
�  Useful for debugging and as a sanity check againt spelling errors in your hints.

�  Full list and description of MPI-IO hint is available from the intro_mpi man page.

I/O Best Practices
�  Read small, shared files from a single task

�  Instead of reading a small file from every task, it is advisable to read the entire file from one task and
broadcast the contents to all other tasks.

�  Limit the number of files within a single directory
�  Incorporate additional directory structure
�  Set the Lustre stripe count of such directories which contain many small files to 1. (default

on Shaheen)

�  Place small files on single OSTs
�  If only one process will read/write the file and the amount of data in the file is small (< 1 MB to 1 GB) ,

performance will be improved by limiting the file to a single OST on creation.

à  This can be done as shown below by: # lfs setstripe PathName -s 1m -i -1 -c 1 (default on Shaheen)

I/O Best Practices (2)
�  Place directories containing many small files on single OSTs

�  If you are going to create many small files in a single directory, greater efficiency will be achieved if you
have the directory default to 1 OST on creation

à# lfs setstripe DirPathName -s 1m -i -1 -c 1 (default on Shaheen)

�  Avoid opening and closing files frequently
�  Excessive overhead is created.

�  Use ls -l only where absolutely necessary
�  Consider that “ls -l” must communicate with every OST that is assigned to a file being

listed and this is done for every file listed; and so, is a very expensive operation. It also
causes excessive overhead for other users. "ls" or "lfs find" are more efficient solutions.

�  Consider available I/O middleware libraries
�  For large scale applications that are going to share large amounts of data, one way to

improve performance is to use a middleware library; such as ADIOS, HDF5, or MPI-IO.

I/O Best Practices (3)

�  Reduce I/O as much as possible:
�  only relevant data must be stored on disks
�  Save data in binary/unformatted form
�  asks for less space comparing with ASCI/formatted ones ⎫ It is

faster (less OS interaction)
�  Save only what is necessary to save for restart or

checkpointing, everything else, unless for debugging reason or
quality check, should be computed on the fly .

�  Think parallel for I/O like for your computations

�  A bad behaving application hurts not only itself but ALL
running applications!

More docs and refs.

�  http://www.mcs.anl.gov/research/projects/darshan

�  https://www.nics.tennessee.edu/computing-resources/file-
systems/io-lustre-tips

�  http://researchcomputing.github.io/meetup_fall_2014/pdfs/
fall2014_meetup10_lustre.pdf

�  http://www.nas.nasa.gov/hecc/support/kb/lustre-best-
practices_226.html

�  http://docs.cray.com/cgi-bin/craydoc.cgi?
mode=View;id=S-2490-40;idx=books_search;this_sort=release
_date%20desc;q=getting%20started;type=books;title=Getting
%20Started%20on%20MPI%20I/O

Thank You !

41

